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Machine learned potential energy surfaces (ML-Pes) provide a cost-effective
and accurate way to run molecular dynamics (MD) simulations. ML-Pes are
typically trained on energies on forces from first principle methods such as den-
sity functional theory and almost reproduce their accuracy[1, 2].

In our research, we applied ML-Pes to study room temperature ionic liquids,
which have high viscosity and therefore, require long simulation times to investi-
gate dynamic properties. However, constructing and analyzing ML-Pes involves
multiple steps and parameters, that necessitate specialized research software.
Our workflow typically consists of many steps, such as

• data generation.

• model training.

• model deployment.

We developed MLSuite, a python package that provides a comprehensive
suite of tools for ML-Pes research. MLSuite includes state-of-the-art models
like MACE and Nequip, as well as analysis and data generation tools[3, 4]. By
applying MLSuite, we were able to streamline our workflow and easily generate,
analyze and train models on data for our research.

MLSuite is built on top of ZnTrack, an open-source package that provides
a flexible framework for managing data-focused workflows[5]. ZnTrack is built
on the concept of Data as Code (DaC), which means that data and metadata
are treated as code, making them versionable, shareable, and reusable. For this
purpose we developed ZnTrack to work with GIT and Data Version Control.

Moreover, ZnTrack is a flexible tool that can be used for many different
types of data-focused workflows. It was important to us to provide ZnTrack as
an open source tool so that others can easily use and modify it for their own
research. We believe that open-source software is crucial for advancing scientific
research and hope to contribute to it.
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