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Our research investigates the effectiveness of applying hard constraints to
neural operators for learning partial differential equations. Machine learning
techniques, particularly deep neural networks, have become increasingly preva-
lent in the study of physical systems. These methods are applied to a variety
of scientific investigations, ranging from system identification, such as the dis-
covery of parameters in PDEs, to the learning of complete systems solely from
sensory data. While these methods can be computationally expensive and slow
to train, once they are trained, their evaluation time is extremely fast. Addi-
tionally, their ability to seamlessly integrate the existing algorithms with new
data makes them a promising alternative to traditional numerical solvers|[1].

Despite the increased use of deep neural networks in scientific machine learn-
ing, the accuracy of these models remains a significant challenge. To address this
issue, physics-informed neural networks (PINNs) were introduced as a means
of combining domain knowledge with data by including the partial differential
equation (PDE) in the DNN loss function[2]. This approach removes inadmis-
sible mappings that do not adhere to physics, improving the accuracy of the
model. However, the drawback of PINNs is that they are limited to learning
only a single instance of a PDE, requiring new training for each new problem
encountered.

To overcome this limitation, neural operators were introduced to extend the
capabilities of PINNs to function spaces[3]. Neural operators can learn a family
of PDEs, and therefore, only require a forward pass for a new PDE instance. By
incorporating the knowledge of the function space, neural operators can gener-
alize to new PDEs without the need for retraining, making them a more efficient
approach for scientific machine learning.

The primary reason for the accuracy issues in neural operators is also a failure
to respect the underlying physical laws. While soft constraints can partially ad-
dress this problem by adding a physical loss term and increasing its weight, this
approach can lead to ill-conditioning and limit the model’s ability to learn from
datal[4]. Hard constraints provide a more effective solution for enforcing physical
laws while also preserving the contribution of data to the learning process. In
our study, we explore different techniques for applying hard constraints, such
as penalty methods and augmented Lagrangian methods, and compare their
performance to that of soft constraints for various partial differential equations.
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