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A significant aspect of the scientific process in natural science is to formu-
late new research hypotheses based on experimental data. Artificial Intelligence
(AI) has been proposed as a new tool [8] for scientists to support hypotheses for-
mulation. Recently, Bayesian methods [5, 2] for the task of symbolic regression
have become key candidates to aid scientists, because of their well-defined poste-
rior of symbolic solutions given priors and evidence in the form of experimental
data. In general, it has been beneficial to exploit the vast amount of knowledge
available in natural sciences as a yield of centuries of research. While Bayesian
frameworks lend themselves naturally to encode it as prior distributions, exist-
ing encodings lacked expressiveness or closure properties to adequately capture
prior knowledge about equations. Standard approaches to encode priors about
the structure of the unknown equation would leverage formal languages, i.e.
(weighted) subsets, of arbitrary strings. This formalism has several weaknesses:
(i) The set of syntactically correct arithmetic expressions (compare Dyck’s lan-
guage) is not regular, rendering it not expressive enough for languages of practi-
cal interest. Thus Probabilistic Context-Free Grammar (PCFG) are used. But
(ii) PCFG can also generate strings of mathematical symbols that are not syn-
tactically valid equations, and (iii) context-free grammars are not closed under
boolean operations [4], making arbitrary combinations of prior knowledge from
different sources infeasible.
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Figure 1: Scientists have data and prior knowledge. Our Bayesian Inference
requires samples and density evaluations of the latter and yields a posterior dis-
tribution over expressions that fit the data consistently to the prior knowledge.

Method We propose to enhance existing encodings of priors by using formal
tree languages L ⊆ TΣ [1] and suggest an inferencing method (fig. 1) that allows
for the inclusion of these priors into symbolic regression. Since syntactical cor-
rectness of equations is ensured with a ranked alphabet Σ in a tree language, it is



possible to define expressive regular languages L with: (i) compact Probabilis-
tic Regular Tree Expression (pRTE) [7], and (ii) closure properties [6] under
Boolean set operations that allow to easily combine the prior knowledge. A
scientist expresses prior knowledge through pRTEs. The pRTEs are automati-
cally translated to a joint Probabilistic Tree Automaton (PTA). Our inference
algorithm works on the data interacting with the pRTE to sample proposal ex-
pressions t ∼ pL, as well as with the PTA to evaluate probability densities pL(t)
to decide on the acceptance of proposals t ∈ TΣ. This Markov Chain Monte
Carlo (MCMC) inference yields a posterior distribution over arithmetic expres-
sions fitting the data evidence and respecting the experts’ prior knowledge.

Application Sorption is the transition of ions or molecules from a solution to
a solid phase. All kinds of sorption isotherm equations (e.g. Freundlich or Lang-
muir) relate the equilibrium sorptive concentration c (mg

L ) in the solution phase
with the sorbate concentration s (mg

Kg ) in the soil to characterize contaminants

and its retention in soils. This knowledge has been unified [3] as
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with each choice for n,mi and assignment to parameters sT , fi, qij , . . . being a
model for c 7→ s that all share some regular pattern which we express as
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and exploit it for inference in our framework. Our experiments show that this
approach outperforms standard symbolic regression algorithms in the majority
of our scenarios and extrapolation datasets.
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