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1 Introduction
Our goal is to identify an unknown nonlinear system from input-output mea-
surements where we assume to have partial knowledge about the system in the
form of a linearized model. The underlying true system consists of nonlinear
differential equations as well as some unknown environmental effects. We have
access to a linear model that approximates the nonlinear differential equation
and a set of input and output measurements. We use a recurrent neural network
(RNN) to compensate for the error between the linearized model and the true
system and train it by the input-output measurements. The RNN can be seen as
a linear, time-invariant (LTI) system with nonlinear disturbance, which allows
us to give system theoretic guarantees on the learned input-output behavior.
To give such guarantees the parameters are constrained which leads to worse
prediction accuracy when compared to unconstrained neural networks [1]. By
incorporating prior knowledge in the neural network our hypothesis is to improve
prediction accuracy and still be able to give rigorous guarantees. The input-
output measurements are from the set D := {(wp, zp)i}Ni=0 where the input and
output is a sequence denoted by wp and zp respectively, an element at time step
k = 1, . . . , T is denoted as wk

p ∈ Rnwp , zkp ∈ Rnzp .
We further assume to know a linear model(
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where the state xk
lin is observed at the output yk. The state matrix Alin ∈ Rnx×nx

and the input matrix Blin ∈ Rnx×nwp are an approximation of the true nonlinear
system. A LTI system in feedback interconnection with a static nonlinearity is a
generalized version of a RNN and can be described as:xk+1
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wk = ∆(zk), (2b)

where ∆ := Rnz 7→ Rnz is a static nonlinearity. We neglect the D22 block in (2a)
to avoid a direct dependency between zk and wk. For A = B1 = C1 = D11 =
D22 = 0, B2 = I, ∆(·) = tanh(·) and ht−1 = xk

rnn we recover the standard RNN
known from the deep learning literature [2].
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Figure 1: Interconnected RNN with linearization an unknown system.

The RNN (2) should learn the difference between the linearized model and
the true system, the output u can therefore be seen as an error between the
prediction ŵp and the true ground truth output wp.

We evaluate the interconnection shown in Figure 1, which allows us to
incorporate prior knowledge with a recurrent neural network, on a four-degrees-
of-freedom ship motion model [3]

2 Related work
Output feedback synthesis was introduced in [4] and recently connected to RNNs
in [5, 6]. In [5] a RNN was used to control an unstable equilibrium point of a
linear system. It was shown that the interconnection could stabilize the system
and guarantee stability. In a follow-up work [6] the authors extended the RNN
to equilibrium networks.

RNNs are analyzed in [7] for their finite stability gain and an H2-gain, which
refers to a worst-case amplification and the performance to white noise input
sequences respectively.
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