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Bayesian modeling provides a principled approach to quantifying uncertainty
in model parameters and structure and has seen a surge of applications in recent
years. Despite a lot of existing work on an overarching Bayesian workflow,
many individual steps still require more research to optimize the related decision
processes. One such practice is the use of prediction as a proxy for explanation
in the context of latent inferential goals. However, there is an apparent gap
in the joint consideration of causality, predictive performance, and parameter
recoverability with the goal of optimizing the latter. Here, we approach it from
the perspective of model selection in a Bayesian workflow. When PR is the goal,
predictive performance reduces to a conveniently available supporting utility
that ideally helps to select models with better PR at real data inference time
[1]. In practice at least, and despite the theoretical arguments for caution, this
assumption is very commonly (and often implicitly) made whenever explanatory
model choices are based on out-of-sample posterior predictive metrics or their
approximations, such as AIC [2, 3], DIC [4], WAIC [5, 6] or ELPD-LOO [7, 6].
As we know from counter examples [8, 9], this assumption cannot hold in general,
but it remains unclear under which conditions it is actually justified. To answer
the question of ”Can predictive performance be reliably used as a proxy for
(causal) parameter recoverability, within a set of statistical models that all share
the same latent causal model and does the answer to this question depend on
whether or not the latent model is causally consistent?” we conducted a large
simulation study of Bayesian generalized linear models. The results indicate
that for causally consistent models predictive performance can be safely used
as a proxy for parameter recoverability as exemplarily shown in Figure 1 where
better relative predictive performance is predictive of a lower parameter RMSE.
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Figure 1: Conditional effects of ∆ELPDloo on RMSE(βxy) for double-bounded
data and models. Split by data generating link and shape. A negative slope
implies better parameter recovery with better predictive performance.
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