
Combining numerical methods and machine learning

Daniel Ruprecht1, Sebastian Götschel1, Abdul Q. Ibrahim1, Leon
Schlegel1, Julio Urizarna Carasa1, Michael Krispin1

1 Institut für Mathematik, Technische Universität Hamburg, 21073 Hamburg,
Germany

ruprecht@tuhh.de

Almost all areas in the physical or engineering sciences rely on computational
models to some extent. These models can be based on fundamental physics
processes (physics-based) which typically leads to a set of differential equations.
Alternatively, machine learning techniques can be used to infer input-output
relations out of very large sets of data. Both approaches come with different
strengths and weaknesses but they rely on mathematical algorithms to function
reliably and efficiently. In the last couple of years, we are also increasingly
seeing synergies between both worlds, for example when ML is used as part of
a numerical algorithm for solving the differential equations of a physics-based
model [1].

Our poster will present three case studies for combining ML and numer-
ical methods. The first one will be a demonstration how a physics-informed
neural network (PINN) can be used to build efficient coarse propgators for the
parallel-in-time method Parareal [2]. Parareal parallelizes integration of initial
value problems by iterating between a parallel fine solver and a serial coarse
propagator. Since the coarse method constitutes a serial bottleneck, it needs to
be computationally cheap but still accurate enough to ensure fast convergence.

The second case involves computation of trajectories of inertial particles in a
fluid. Their movement is governed by the Maxey-Riley equations [3], but since
this is an integro-differential equation, it is difficult to solve numerically. We
will show some results attempting to train a long short-term memory (LSTM)
network from numerical data to reproduce trajectories.

Lastly, we show results for a PINN attempting to identify the velocity and
diffusion parameters in an advection-diffusion problem from synthetically gen-
erated tracer data.

References
[1] Huang, R. and Li, R. and Xi., Y. 2022. Learning Optimal Multigrid Smoothers via Neural

Networks. SIAM Journal on Scientific Computing, S199:S225.

[2] Ibrahim, A. Q. and Götschel, S. and Ruprecht, D. 2023. Parareal with a physics-informed
neural network as coarse propagator. arXiv:2303.03848 [math.NA].

[3] Maxey, M. R. and Riley, J. J. 1983. Equation of motion for a small rigid sphere in a
nonuniform flow. The Physics of Fluids 26:4.



5 10 15
cores

1

2

3

4

5

sp
ee

du
p

Bound Numeric
Numeric
Bound-PINN-GPU
PINN-GPU
Bound-PINN-CPU
PINN-CPU

Source: [2]

Figure 1: Parallel speedup of a Parareal parallel-in-time algorithm based using
only numerical algorithms (black) versus a combination of numerical and ML
techniques (green and blue). Combining onumerical with ML-based techniques
significantly improves performance. Furthermore, integrating a ML-component
helps to utilize GPUs more efficiently.

10 15 20 25 30 35 40 45 50
x

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

y

URNN: [1500] Lookback: 1

ML Prediction
Training Data

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

4

3

2

1

0

1

2

3

4

y

Figure 2: Trajectories of a particle (left) computed with a numerical solver (red
line) and a LSTM neural network (blue line). The particle moves in a Bickley
jet velocity field (right).

(a) The error value between the reference function and the the approximation.

(b) Comparison of the reference data with the approximation at di↵erent time
steps.

Figure 18: Approximating the convective-dispersion model with reference data and un-
known di↵usion and speed coe�cients.

indicate that the used PINN architecture is able to infer not only the speed but also the
di↵usion coe�cient seen in data and it can infer both of them quite fast, especially when
considering the duration of the training process, which took 61.21 seconds, done with the
hardware described in section 3.1.

All in all, this shows that the presented PINN structure can correctly approximate a
solution of the LAD equation (2.2) and also learn the parameters defining the behaviour of
the curve over time. Furthermore, as shown in the previous experiments, this should also
work with noisy (section 4.4.2) or sparse data (section 4.5.2), indicating that this PINN
archtitecture will be of practical use, given the handed measurements can be described
by the LAD equation.

5 Summary and Future Prospects

Summarizing the results, it can be seen that a PINN architecture, as it was realized in
this thesis, can achieve very precise approximations of functions that are solutions to a
partial di↵erential equation. These approximations are still very accurate, even though
the data of which the parameters are inferred is noisy or sparse, indicating the practical

39

Figure 3: Reconstruction of the concentration of a tracer from synthetically
generated data using a physics-informed neural network (PINN). Shown is the
ground truth (left), the absolute error (midde), and the reconstruction from the
PINN (right).


