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Convolutional neural networks (CNNs) are successfully applied in many
fields, e.g., they are the state of the art in image and audio processing tasks.
However, as CNNs are black box models, their behavior is not fully under-
stood which is especially problematic in safety-critical applications such as au-
tonomous driving and medical devices. Consequently, there is a need to augment
neural networks by including safety and robustness guarantees. To quantify ro-
bustness for neural networks, we use the Lipschitz constant of the input-output
mapping characterized by the CNN which has become common practice [1].
In this context, we address two problem setups. On the one hand, we aim to
determine an accurate upper bound on the Lipschitz constant for given CNNs
[2, 3] and on the other hand, we propose a parameterization to design Lipschitz-
bounded CNNs, i.e., we find a description of a CNN with built-in guarantees on
the Lipschitz constant [4].

The proposed methods for both analysis and training of CNNs utilize well-
established techniques from control theory, including semidefinite programming.
We particularly take the perspective of a control engineer onto neural net-
works using tools and property definitions that have proven to be expedient
over decades to now address problems in the field of deep learning.

The calculation of the Lipschitz constant for neural networks is an NP-hard
problem and it is hence not feasible for large and deep NNs. Instead, we find an
accurate upper bound on the Lipschitz constant. To do this, we overapproxi-
mate common nonlinear activation functions, such as ReLLU, tanh, sigmoid, and
MaxMin via incremental quadratic constraints. They satisfy certain properties,
e.g., they are slope-restricted, which we exploit to formulate linear matrix in-
equalities (LMIs) that are sufficient for Lipschitz continuity of the CNNs. The
Lipschitz constant estimation problem then boils down to a semidefinite pro-
gram, which is a convex optimizazion problem [5, 6].

To further reduce the computational effort and increase the scalability of
the method, we exploit the structure of the LMIs which form the constraints
in the semidefinite program. Rather than formulating one big and sparse LMI
constraint, we break the LMI down into multiple LMIs, yielding exactly one LMI
per layer. Hereby, the underlying idea once again is inspired by control theory.
We enforce disspativity onto all individual layers in the CNN, that typically
consists of convolutional layers, pooling layers, and fully-connected layers as
shown in Figure 1. Finally, we connect the layers through their dissipativity
properties to determine an upper bound on the Lipschitz constant of the input-
output mapping [2].

In some applications, it might not only be useful to verify robustness for
given CNNs, but it may also be desirable to design robust neural networks with
guarantees on the Lipschitz constant. Thus we establish a parameterization of
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Figure 1: Illustration of a 1D convolutional neural network.

CNNs with built-in guarantees on the Lipschitz constant. The way the param-
eters of the CNNs are designed ensures that the LMI conditions that ensure
Lipschitz continuity for the CNN are satisfied. Our parameterization uses the
Cayley transform and the controllability gramian, mathematical tools that are
known from Riemannian optimization and control theory, respectively.
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