
Selection optimization for solvers of simulations

Julia Meißner1, Dominik Göddeke2, Melanie Herschel3

1) University of Stuttgart, Institute of Applied Analysis and Numerical Simulation,
Cluster of Excellence SimTech,

Allmandring 5b, 70569 Stuttgart, Germany
julia.meissner@ians.uni-stuttgart.de

2) University of Stuttgart, Institute of Applied Analysis and Numerical Simulation,
Cluster of Excellence SimTech

3) University of Stuttgart, Institute for Parallel and Distributed Systems,
Cluster of Excellence SimTech

Many important application problems are modeled mathematically by par-
tial differential equations (PDEs), i.e., equations describing the interaction and
evolution of quantities and their derivatives. In general, no solution formulae
exist for PDEs. Hence, numerical schemes must be employed to express the
problem at hand in computer-tractable form and to compute (approximate) so-
lutions. Different applications typically lead to different requirements, e.g., max-
imizing accuracy in safety-critical scenarios, or minimizing runtime in weather
prediction.

The process of solving a partial differential equation starts with discretiza-
tion, and solving the resulting linear equation system. To solve a linear equation
system you have to choose a solver scheme, including an iterative solver and a
performance enhancing preconditioner. In our work we focus on the solver class
of Krylov subspace methods (e.g. Conjugate Gradient [1], Generalized minimal
residual method [3]) with suitable preconditioners (e.g. dual threshold incom-
plete LU factorization [4]). Some of these solver schemes even require a problem
dependent adaption through parameter selection.

The choice of which scheme to use and how to set its parameters depends on
the requirements and goals of the application at hand. Furthermore a selection
can only be slightly justified a priori and therefore needs extensive data collec-
tion [2] or is done in a manner of try and error. This means that a good selection
does not ensure an optimal selection and depends on the experience of the re-
searcher. We present a new approach to automate and optimize the selection
that gives us the opportunity to reuse data as requirements and optimization
goals change.
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[2] Kühnert, J., Göddeke, D., Herschel, M. 2021. Provenance-integrated parameter selection
and optimization in numerical simulations. In: TaPP 2021. USENIX.

[3] Saad, Y., Schultz, M. H. 1986 GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on scientific and statistical comput-
ing 7.3, pp. 856-869.

[4] Saad, Y. 1994. ILUT: A dual threshold incomplete LU factorization. Numerical linear
algebra with applications 1.4. pp. 387-402.


