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In many applications, quantities of interest cannot be observed directly be-
cause they lie, for example, in the past, are too far away from the observer, or
their observation would require disproportionate effort. Instead, these quantities
are usually determined by measuring other quantities that are easier to observe
and whose functional relationship with the actual quantity of interest is known.
Mathematically speaking, we aim for the inversion of the function which maps
the quantity of interest onto the observable quantity leading to the term inverse
problem [1, 2]. Such problems are often found in medical imaging, where one is
interested in the internal structure of a patients’ body, but the patient should
not simply be cut open. Alternatively, one observes the interaction of radiation
with the tissue. The knowledge on how different types of tissue interact with
radiation can be utilized to reconstruct the patient’s inner structure [3, 4].

Reconstructing a quantity of interest from an observable is often challeng-
ing since even if a functional relationship between both quantities is available,
perturbations might lead to the inverse problem being ill-posed. With the in-
crease of computational power, various techniques have been developed to solve
inverse problems, most of which rely on regularization theory [5]. Using regu-
larization, one can overcome the ill-posedness of the inverse problem and obtain
a reconstruction of the quantity of interest. Nevertheless, this approach some-
what neglects the ill-posed nature of the inverse problem. Aiming for a single
solution of the inverse problem is often misleading since there might not even
exist a (unique) solution. As an alternative, Bayesian inversion theory has been
developed which reformulates the inverse problem as follows. Instead of asking
what value the quantity has taken, Bayesian inversion theory asks what is the
probability that the quantity has taken on a particular value. This approach
extends the solution concept of an inverse problem with the goal of finding a
probability distribution instead of a single reconstruction.

The main advantage of Bayesian inversion is the possibility to calculate
different point estimates and perform uncertainty quantification for them. Given
the ill-posed nature of an inverse problem, being able to quantify the credibility
of the estimate is essential [6]. Thus, we are not only interested in calculating
point estimates but always consider the combination of both the point estimate
and the corresponding confidence.

In our work, we deal with inverse problems related to the diffusion equa-
tion, i.e. an elliptic partial differential equation (PDE) which models a diffusion
process in a heterogeneous medium. In particular, we are interested in the



reconstruction of the underlying diffusivity field encoding the structural infor-
mation of the medium by observing only the solution of the PDE. We consider
piece-wise constant diffusivity fields which model inclusions in the medium in
which the diffusion process takes place, which has numerous applications e.g. in
medical imaging or geology [7, 8, 9].

One of the main challenges in PDE-driven Bayesian inversion is to overcome
the high computational effort associated with the inversion process which in-
volves solving the PDE possibly hundreds of thousands of times. We employ a
deep learning approach which allows us to solve the elliptic PDE significantly
faster than by using traditional solvers. In particular, we make use of a Deep
Operator Network recently proposed in [10] which has already been used to learn
the solution operator to various PDEs [11, 12]. We show that our deep neural
network approximates the solution operator of the elliptic PDE in some oper-
ator norm and present numerical results illustrating the computational benefit
that can be achieved by our method.
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