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Simulations consist of many numerical components that affect the simulation
accuracy and the required resources. Components such as models, discretization,
solvers and floating point accuracy, all influence the simulation behavior. But, a
user of the software is not primarily interested in specific choices of components,
but rather in the final simulation accuracy and resource cost. Finding an optimal
combination of these components that balances accuracy and computational
resources can be a difficult and time-consuming process. Model-based Bayesian
optimization methods are a useful tool to tackle such problems [1]. Many existing
optimization approaches treat the optimization function as a black-box. We
present a Bayesian approach that uses existing knowledge about the simulation
components and that is tailored to optimize simulation parameters for a minimal
error under run time constraints and vice versa.
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Figure 1: Constrained Bayesian
optimization for a one-dimensional
example problem. The objective
function is blue, the constraint is
orange, and the acquisition function
is green.

The Bayesian optimization consists of
three major steps that are visualized in
Figure 1: First, we build surrogate models
for the objective and constraint using
existing data from simulation runs. Here,
we rely on known asymptotic behavior,
such as convergence theorems, to ensure
that the model is able to extrapolate
further away from the data. Modeling
on a logarithmic scale allows the model to
represent typical data, such as errors or
run times, that spans over multiple orders
of magnitude. Second, the models are
used to evaluate a so-called acquisition
function to select a new evaluation point
most suited to improve the models and
the current optimum. Selecting a good
evaluation point is crucial as each data
point corresponds to an expensive full
simulation and we, thus, have to ensure
that it leads to a maximal knowledge gain. When optimizing simulations, the
evaluation cost for different simulation parameters can vary significantly, e.g. due
to different discretization widths. Therefore, we present cost-aware acquisition
functions that do not only take the constrained structure of the optimization
problem into account, but also put the knowledge, that is gained by an evaluation
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in relation to the evaluation cost. Third, the run is actually executed, data are
added to our already existing data set, and we proceed with the first step again
in the next iteration.

We present modeling and optimization aspects and show our findings on the
multi-scale multi-physics muscle simulation framework OpenDiHu [2].
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