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The acquisition of experimental data in Systems Biology is time-consuming
and costly. On the one hand, this is due to expensive chemicals, such as anti-
bodies, on the other hand, due to the need for extensive preparation, incubation,
and purification procedures of experiments. Finding the best experiment design
helps to get the maximum possible information out of limited experimental data,
thereby minimizing cost and time. Here, we present first results of Bayesian Op-
timal Experiment Design (BOED) in a Findable, Accessible, Interoperable, and
Reusable (FAIR) fashion. In particular, our approach makes use of the Systems
Biology Markup Language (SBML), the de facto modeling standard in Systems
Biology, and is set up in an easily applicable and reusable way. Models, data,
and code will be stored on Fairdomhub.

BOED was applied to Michaelis-Menten enzyme kinetics with different ini-
tial substrate concentrations cinit (Figure 1). In the first attempt, three different
experimental designs were investigated with artificial data. The first design in-
cludes three measurements with initial substrate concentrations larger thanKM ,
the second design includes three measurements with initial substrate concentra-
tions lower than KM , and the third design includes only two measurements but
with lower and higher initial substrate concentrations than KM . Our results
show that in the first design only kkat but not KM can be identified. In the
second design, kkat and KM are correlated. Only in the third design with only
two experiments, both parameters can be identified and the IG was highest.
These results demonstrate that proper planning of the experimental design can
improve the estimation of the parameters and at the same time reduce the num-
ber of experiments needed. Now, the next step is to predict the optimal starting
concentrations via BOED.

In practice, we want to use the Kullback-Leibler divergence (KLD) to cal-
culate the difference between the prior and the posterior. The design that max-
imizes the KLD has thereby the largest information gain. Mutual information
is the expected KLD between the prior (p(θ)) and the posterior p(θ|d, y), with
design d and data y:

U(d) =

∫
Θ

∫
Y

p(θ, y|d)[log p(θ, y|d)− log p(y|d)− log p(θ)]dydθ (1)

Both, the posterior P (θ|d, y) and the evidence p(y|d) are needed for the cal-
culation of the mutual information utility. Therefore, we want to apply the
dynesty [1] algorithm. Dynesty is a dynamic nested sampling algorithm that
estimates the posterior and evidence simultaneously and is already implemented
in the pyPESTO [2] toolbox which works with SBML. Nested sampling splits
the likelihood slices and samples them individually via nlive live samples. The



Figure 1: Bayesian Optimal Experiment Design applied to enzyme-
driven substrate conversion for the identification of the parameters
KM and kcat. BOED maximizes the information gain between the prior and
posterior. Three experimental designs, with (1) initial concentrations higher
than KM , (2) initial concentrations lower than KM and (3) a combination of
higher and lower concentrations are considered. Their respective metabolization
time curves are used to estimate the posterior (bronze) for each design. The
Information Gain (IG) quantifies the difference between Prior and Posterior.

weighted sum of samples of these likelihood slices approximates the evidence.
Dynamic nested sampling adapts the number of live points in the sampling
process dynamically, to get a more accurate estimate of the evidence.

In conclusion, we plan to use dynamic nested sampling for BOED in a FAIR
way. Therefore, we will use toolboxes that are maintained by the Systems Biol-
ogy community and are applicable to SBML. This will be done for an artificial
Michalis-Menten model first and afterward applied to real enzymatic data.

References

[1] Speagle, Joshua S. (2020): dynesty: a dynamic nested sampling package for estimating
Bayesian posteriors and evidences. In: Mon. Not. R. Astron. Soc. 493 (3), S. 3132–3158.
DOI: 10.1093/mnras/staa278 .
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