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Data-integrated Simulation Science often requires the fit of model outputs
to experimental data. This can be achieved by properly choosing free model
parameters and in the best case, this parameter estimation even enables scien-
tific reasoning. The most fundamental way to solve this parameter estimation
task is by first defining an error function between simulation output and exper-
imental data, and second, minimizing said error. The resulting parameter point
estimate, while being a good first guess, is still lacking some desirable proper-
ties. For example, it does not indicate whether the found result is the only good
one or how sensitive it is with respect to measurement noise. In addition, the
definition of meaningful error functions is a challenging modelling task by itself.
Probabilistic inference methods like Bayesian parameter inference circumvent
some of the aforementioned issues by returning a probability distribution over
all parameters that inherently indicates ambiguities and quantifies uncertainties.
However, it still relies on a suitable likelihood function or distribution distance
measure in the likelihood-free case.

With Eulerian Parameter Inference (EPI), we presented an intuitive, math-
ematically well-founded parameter estimation method that returns a parameter
distribution that is in accordance with experimental data for a given, determin-
istic simulation model [1]. It does not require the definition of any kind of error,
likelihood or distance function and only used evaluations of the model and its
derivative during the parameter estimation task.

At its core, EPI interprets the measurement data {yi}i=1...n as a sample of
an underlying data random varible Y. Using the deterministic simulation model
s, the data density ϕY is transformed to become a parameter density ϕQ. Each
pointwise evaluation of the parameter density indeed only requires the result of
one simulation and simulation derivative. Figure 1 visualizes EPI concisely.

We already presented the successful implementation of EPI for several aca-
demic examples. Now, our ambitious goal is to generalize EPI towards being a
black-box method for general modelling applications. However, there are still
challenges to tackle on this way. Specifically, we are currently investigating
different kinds of heterogeneous data and how EPI can be used to optimally
extract included information. Furthermore, modern sampling techniques are
employed to use as few simulation evaluations as possible during the inference
task in order to be computationally efficient. A third interesting area is the
generalization of EPI towards non-deterministic simulation models.



Figure 1: Schematic visualization of EPI. From the measured data points (top
right), we perform a data density estimation (top left). EPI then estimates either
the parameter density over a grid (bottom left) or directly samples from the
parameter distribution (bottom right). The estimated parameter distribution
can be validated by simulating the parameter sample and comparing the solution
to the original data.
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