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The M. tibialis anterior (TA) is an important contributor to successful 
locomotion and preserving an upright posture [1]. Its unique function as single-
joint and sole ankle dorsiflexor as well as its superficial location allow for clearer 
determination of muscle properties and their influence on muscle contraction 
compared to other muscles of the human body [2]. However, information 
regarding the contractile and architectural properties of the TA remains scarce. 
Especially in regards to simulation there are, so far, no validated human 3D muscle 
models, which realistically predict muscle force generation, muscle deformation 
and changes in 3D muscle architecture during contraction. The aim of this study 
is to provide comprehensive data for modelling of architectural-informed and 
activation-driven models of the human TA.  

Figure 1: The ultrasound transducer is placed 25mm distal of the proximal end of 

the central aponeurosis of the TA (A). Clear differences in FL, PA and MT can be 

observed between relaxed (B1) and contracted (B2) conditions from ultrasound 

images. MAR (C1) and MVR (C2) are in accordance with results from studies with 

other skeletal muscles [3, 4]. 

 
Therefore, twenty-eight healthy and physically active males(n=13, a=26.6±4y, 

m=74.8±7.7kg, h=178.9±5.3cm) and females (n=15, a=24.6±3.3y, m=62.3±9.9kg, 

        

         

  

  

  

  

 
 
  

 
 
  
 
 

 

   

          

              

  

  

  

  

  

 
 
  

 
 
  
 
 

 

   



h=166±8.4cm) performed maximum voluntary isometric and isokinetic 
dorsiflexions in a dynamometer (ISOMED2000). Ankle joint angles were 
measured with a 3D high speed camera system (Baumer VLXT-Series). 
Information on the architectural changes (pennation angle and fascicle length) of 
the TA between relaxed and contracted state as well as during dynamic 
contraction was obtained with an ultrasound system (Aixplorer MACH30).  

Based on this data the moment-angle-relationship (MAR)[3], moment-
velocity-relationship (MVR)[4], contraction history-dependent effects (HDE)[5], 
isometric contraction behavior after stretch-shortening-cycle (SSC), muscle 
thickness (MT), pennation angle (PA), fascicle length (FL) of TA were 
characterized. MAR and MVR are in accordance with results of other studies on 
skeletal muscles [3, 4]. The physiological working range of the TA is on the 
ascending branch and the plateau of the MAR [6]. Changes in generated forces for 
the HDE are within the expected range for mammalian skeletal muscles [7]. The 
gender differences in muscles characteristics and muscle architecture parameters 
are discussed. The data serves as a basis for the development and validation of the 
first realistic human 3D muscle model to predict changes in 3D muscle 
architecture, shape and force during contraction. In further studies, the model 
should then be adapted to specific subject groups in order to take into account the 
influence of age or sport. 
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