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Groundwater heat pumps are a promising renewable energy technology. The
installation of new heat pumps is constrained by already existing heat pumps
and regulations on groundwater temperature fluctuations. Hence, a fast and
reliable quantification of the impact on groundwater temperature is required.

In our work, we start with simplified box-examples and scale to complex
multiscale-scenarios like groundwater flow in the region of Munich (geoKW
project [1]). In each step we compare analytical, numerical and machine learn-
ing approaches, analyze their limitations and improve these methods further if
possible.

So far, a simplified two-dimensional stationary and isotropic benchmark
problem with varying quantities of permeability and Darcy velocity is defined.
The comparison includes an analytical model (LAHM) [4], a numerical simula-
tion (Pflotran [3]) and a data-driven neural network (e.g. CNN).

The real-world scenario is a large, three-dimensional domain, with limited
data availability, and effects not modelled by simulation software like Pflotran,
such as thermal recycling and groundwater temperature that varies with season
and depth. The goal of our work is a multiscale, multilevel neural network that
incorporates physics (PINN [5]) and super-resolution approaches (PICNNSR [2])
to balance the missing data and to model effects not previously included in
simulation software while quantifying the uncertainty of its results.
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