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When solving Hamiltonian systems using numerical integrators, preserving
the symplectic structure is crucial [4]. At the same time, solving chaotic prob-
lems requires integrators to approximate the trajectories with extreme precision.
This can be very computationally expensive. However, for example in [1] it was
shown that a neural network can be a viable alternative to numerical integra-
tors. Offering high accuracy solutions for the chaotic N-body problem many
orders of magnitudes faster.

To understand when it is useful to add physics constraints into neural net-
works, we analyze three well-known neural network topologies that include a
symplectic structure inside the NN architecture [3, 6, 2]. Between these neural
network topologies many similarities can be found [5]. This allows us to formu-
late a generalized framework for these topologies. With the new framework, we
can find novel topologies by transitioning between the established ones.
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Figure 1: A visualization of the generalized framework of neural networks for
Hamiltonian systems. (GHNN)

We compare these new Generalized Hamiltonian Neural Networks (GHNN)
against the already established SympNets and HénonNets and physics-unaware
multilayer perceptrons. This comparison is performed with data from a pen-
dulum, a double pendulum and a gravitational three-body problem. A special
focus lies on the generalization capabilities outside the training data. We found
that the GHNN outperforms all other neural network architectures.
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