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Magnetorheological elastomers (MREs) are composite materials comprised
of elastomer matrix and magnetic inclusions. Due to their magneto-mechanical
coupling properties, they have immense potential for application as soft ac-
tuators showing large mechanical deformation induced remotely by magnetic
fields [1, 7]. The magneto-mechanical properties of MREs can be tuned by
the design of their microstructure [2]. At the microscopic level, the magneto-
mechanical response of MRESs is driven by particle-particle and particle-matrix
interactions. In periodic structures, these interactions can further be exploited
to induce buckling-type structural instabilities that give rise to an abrupt change
in their microscopic morphology [5]. Associated pattern transformations result
in altered acoustic, phononic and photonic properties of the MRE.

The detection of the related instability points together with the resulting
buckling patterns is an elaborate and time-consuming process. It is thus our
goal to create a surrogate model that can predict the associated effects in an ac-
celerated manner and with a reduced footprint concerning direct computational
resources. We study the microscopic bifurcation behavior of MRE microstruc-
tures with different inclusion types [5] as a starting point.

To assess the coupled behavior of MRE microstructures, we will employ a
multiscale approach to large strain magneto-elasticity according to [5], which is
further utilized to determine microscopic and macroscopic instabilities. The un-
derlying formulation is based on a four-field Hu-Washizu-type variational formu-
lation proposed in [6], implemented in a finite element setting. The microscopic
structural stability analysis is based on a Bloch-Floquet wave analysis [3]. This
analysis can determine structural microscopic instabilities that result in repre-
sentative volume elements (RVEs) composed of several unit cells (see Fig. 1).
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Figure 1: Change of periodicity of a microstructure due to microscopic structural
instability [5]



In order to comnsider various occurring deformation types in a design pro-
cess, a surrogate model is proposed to obtain a first estimate of the bifurcation
of specific microstructures. The surrogate model will be based on a Convolu-
tional Neural Network (CNN), implemented as a forward model using SENet-
blocks [4]. Input to the surrogate model is the binarized image of the initial
voxelized microstructure and the amplitude of the applied magnetic induction.
The output is a voxelized map of deformation in two spatial dimensions. The
CNN is trained on a dataset created by using the simulation framework doc-
umented in [5]. Emphasis is put on a wide range of different inclusion types
and the resulting microstructures by parameterizing the volume fraction as well
as the orientation and shape of the inclusions. With this parametrization, the
CNN can predict the resulting deformation modes within a parameter-specific
periodic RVE for a vast parameter space of inclusion types, volume fractions
and magnetic loadings.

References

anas, K., Kankanala, S. V., Triantafyllidis, N. . Experiments and modeling of iron-

1] D K., Kankanala, S. V., Tri fyllidis, N. 2012. E i d modeli fi
particle-filled magnetorheological elastomers. Journal of the Mechanics and Physics of
Solids 60, pp. 120—-138.

[2] Danas, K. 2017. Effective response of classical, auxetic and chiral magnetoelastic materi-
als by use of a new variational principle. Journal of the Mechanics and Physics of Solids
105, 25-53.

[3] Geymonat, G., Miller, S., Triantafyllidis, N. 1993. Homogenization of nonlinearly elas-
tic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch.
Ration. Mech. Anal. 122, pp. 231-290.

[4] Hu, J., Shen, L., Sun, G. 2017. Squeeze-and-Excitation Networks. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 7132-7141.

[5] Polukhov, E. and Keip, M.-A. 2021. Multiscale stability analysis of periodic magnetorhe-
ological elastomers. Mechanics of Materials 159:103699.

[6] Simo J. C., Taylor R. L., Pister K. S. 1985. Variational and projection methods for the
volume constraint in finite deformation elasto-plasticity. Computer Methods in Applied

Mechanics and Engineering 51, pp. 177—208.

[7] Ubaidillah, Sutrisno J., Purwanto A., Mazlan S. A. 2014. Recent Progress on Magnetorhe-
ological Solids: Materials, Fabrication, Testing, and Applications. Advanced Engineering
Materials 17, pp. 563-597.



