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Gaussian Processes for Machine Learning (GP4ML) are an established kernel-
based Bayesian machine learning method that has also been considered in the
context of differential equations. The central point of GP4ML is the update step.
Here, information in form of equations or observations are used to transform,
through conditioning, the prior Gaussian process into an a-posteriori Gaus-
sian process. From a mathematical point of view, however, the application of
GP4ML for differential equations is not sufficiently justified, in particular if it
comes to infinite rank conditioning. The latter notion of conditioning, how-
ever, is somewhat natural either as an idealized limit of existing methods or
as a methodologically independent approach of its own. Our goal is to address
these shortcomings by establishing a rigorous and general conditioning theory
for GP4MLs and to apply this theory in the context of differential equations.
One particular focus lies on approximations with finite rank conditionings by
employing for example martingale techniques.
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