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We use computational multiphase and multiscale continuum-biomechanical
modelling of biological tissue to simulate the hepatic deformation-perfusion-
function relationship and allow patient-specific prediction of liver surgery [1, 2].
Using coupled continuum-biomechanical PDE-ODE models based on the theory
of porous media (TPM) [3, 4], we obtain a precise mathematical description and
thus perform numerical simulation of function-perfusion processes in the human
liver. For this purpose, we describe the functional liver units, the liver lobules, as
a homogenized porous medium, while considering an anisotropic blood flow. By
coupling the metabolic processes at the cellular level, a poroelastic multiphase
and multiscale function-perfusion model is thereby obtained. Additionally, the
multiscale liver model is integrated into a whole-body ODE-based physiological-
based pharmacokinetics model that includes multiple organ compartments that
account for detoxification, such as the lung or kidney. The coupling of the
different scales is done using the coupling library preCICE [5]. Based on this
framework as shown in figure 1, depending on the considered phases, solutes,
and metabolic processes, we can not only describe tumor growth, but will also
support clinical decision-making processes during the treatment of acute and
chronic end-stage liver diseases in the future.

During the last decades, liver diseases such as non-alcoholic fatty liver dis-
ease (NAFLD) or advanced forms with acute and chronic end-stage liver disease
like a liver tumor account for a significant proportion of Western civilization dis-
eases (see also figure 2). In addition to chemotherapeutic treatment, tumors are
treated by removing the tumor-bearing tissue (resection) or liver transplanta-
tion. Based on our model, we describe not only the residual liver function after
resection, but also the resulting perfusion changes, as well as regeneration by re-
growth of healthy tissue. However, also liver transplantation is a curative treat-
ment option, which in turn is confronted with an increasing number of elderly
multi-morbid potential recipients and donors as well as ischemia reperfusion in-
jury (IRI) occuring during the non-perfused transportation time. According to
the considered condition, in addition to the blood phase and healthy liver tissue
phase, further solid phases such as necrotic, tumor, or fatty tissue are included
all with their respective solutes.

To make patient-specific predictions for these cases, we enhance the model
through the integration of experimental, clinical, and in silico data from cooper-
ation partners [6]. This involves not only laboratory data to provide initial and
boundary values for solutes and the ODE models, but also automated image
analysis from the field of machine learning to read geometry of liver lobules and



Figure 1: The underlying model consists of several scales, which are linked
to form an ODE-PDE-ODE model, where each scale is supplied with patient-
specific data. Image created with BioRender.com

Figure 2: Stages of liver disease and treatment due to western lifestyle choices.
Image created with BioRender.com

zoning patterns of steatosis from histopathological images. For object identi-
fication, we use Mask R-CNNs [7], for which training data were annotated by
pathologists. Subsequently, liver lobules and the individual zonations can be
constructed from the positions and classification of the identified portal fields,
central veins, and hepatocytes. Further, we use physics-informed machine learn-
ing (cf. [8]) to allow near-real time predictions for clinical applications of the
models.
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